A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: from concept to clinical trial.
نویسندگان
چکیده
Cell and tissue engineering are now being translated into clinical organ replacement, offering alternatives to fight morbidity, organ shortages and ethico-social problems associated with allotransplantation. Central to the recent first successful use of stem cells to create an organ replacement in man was our development of a bioreactor environment. Critical design features were the abilities to drive the growth of two different cell types, to support 3D maturation, to maintain biomechanical and biological properties and to provide appropriate hydrodynamic stimuli and adequate mass transport. An analytical model was developed and applied to predict oxygen profiles in the bioreactor-cultured organ construct and in the culture media, comparing representative culture configurations and operating conditions. Autologous respiratory epithelial cells and mesenchymal stem cells (BMSCs, then differentiated into chondrocytes) were isolated, characterized and expanded. Both cell types were seeded and cultured onto a decellularized human donor tracheal matrix within the bioreactor. One year post-operatively, graft and patient are healthy, and biopsies confirm angiogenesis, viable epithelial cells and chondrocytes. Our rotating double-chamber bioreactor permits the efficient repopulation of a decellularized human matrix, a concept that can be applied clinically, as demonstrated by the successful tracheal transplantation.
منابع مشابه
Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products.
Despite the compelling clinical need to regenerate damaged tissues/organs, impressive advances in the field of tissue engineering have yet to result in viable engineered tissue products with widespread therapeutic adoption. Although bioreactor systems have been proposed as a key factor in the manufacture of standardized and cost-effective engineered products, this concept appears slow to be emb...
متن کاملRepairing the Osteochondral Defect in Goat with the Tissue-Engineered Osteochondral Graft Preconstructed in a Double-Chamber Stirring Bioreactor
To investigate the reparative efficacy of tissue-engineered osteochondral (TEO) graft for repairing the osteochondral defect in goat, we designed a double-chamber stirring bioreactor to construct the bone and cartilage composites simultaneously in one β-TCP scaffold and observed the reparative effect in vivo. The osteochondral defects were created in goats and all the animals were divided into ...
متن کاملCartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor.
Tissue engineering is a new approach to articular cartilage repair; however, the integration of the engineered cartilage into the host subchondral bone is a major problem in osteochondral injury. The aim of the present work, therefore, was to make a tissue-engineered osteochondral construct from a novel biphasic scaffold in a newly designed double-chamber bioreactor. This bioreactor was designe...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملA modular flow-chamber bioreactor concept as a tool for continuous 2D- and 3D-cell culture
Background Advanced cell culture models, especially long-term 3D systems, require bioreactors allowing for cultivation under continuous flow conditions. Such culture models are for example tissue engineered implants, 3D cultures for drug testing, in vitro models of cell growth and migration for wound healing studies, cell cultures for biomaterial testing. New challenges in drug testing and biom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 30 29 شماره
صفحات -
تاریخ انتشار 2009